UGDSB Home Tip Sheet: Strategies to Add, Subtract, Multiply, and Divide

Why are we teaching strategies versus going straight to memorization?

- "Strategies help students find an answer even if they forget what was memorized. Discussing math fact strategies focuses attention on number sense, operations, patterns, properties, and other critical number concepts."
- "Children should learn their number facts. However, they would benefit from learning these facts by using an increasingly sophisticated series of strategies rather than by jumping directly to memorization."

Focusing on
the Fundamentals of Math
A TEACHER'S GUIOE
These are quotes from the newly released Ministry of education document pictured above

Are teachers still teaching the way parents learned?

- Yes
- Our curriculum calls this the "standard algorithm"
- Teachers have the knowledge to know WHEN to teach the standard algorithm
- Example: students would begin to learn the standard algorithm for addition WHEN they have a solid understanding of place value (ie. they can easily break a 2 digit number into tens and one)

Homework

"I want to help my child with their math homework, but I don't understand how to help them. They say the need to use a specific strategy but I have no idea what that strategy is."

- Use the guide below to help
- Show your child the sheet to help you identify what strategy they are working on
- Give it your best shot
- If you and your child are still struggling feel free to stop.

Communicate to the teacher in the child's agenda or a note that your child tried to do the homework but was unable to use the strategy requested.

Adding Up/Counting Back OR Removal

Adding Up Strategy Explained:
9-3
Students start at 3 and add up until they arrive at 9

Counting Back Strategy Explained:
9-3
Students start at 9 and count backwards 3

Strategy Explained:

Students add to or subtract from the subtrahend to make an easy number to subtract.

Example \#1
49-23
23-3 = 20 (round)
49-20 = 29
29-3 = 26 (fix)

Adding Up in Chunks/Removal in Chunks

Adding Up in Chunks Strategy Explained:

This strategy is based on students understanding that subtraction can be the difference or space between two numbers.

49-23
$23+10=33$
$33+10=43$
$43+6=49$
$10+10+6=26$

Keeping a Constant Difference

Strategy Explained:

Adding or subtracting the same quantity from both the subtrahend and minuend maintains the difference between the numbers.

MULTIPLICATION		
Skip Counting/ Repeated Addition	Doubling	Friendly Numbers
Strategy Explained: Students count (or add up) by a number to find the product 4×6 as 4 groups of six $4,8,12,16,20,24$ $4+4+4+4+4+4=24$ 4×6	Strategy Explained: Students use their knowledge of skip counting and doubles or x2 facts to determine the product in more complicated situations. $\begin{aligned} & 4 x 3 \\ & 2 x 3=6 \\ & 2 x=6 \end{aligned}$	Strategy Explained: Students use facts they know to help them solve facts they do not know. ```9\times8 10\times8=80 "we added one more group of 8 80-8=72 "we took that extra group of 8 away 9\times8=72 7\times6 7\times5=35 * start with a related fact we know 35+7=42 * adding one more group of 7 7\times6=42```
Partial Products	Doubling and Halving	Breaking Factors into Smaller Factors
Strategy Explained: Students look at the numbers being multiplied and split one (or both) numbers into numbers the are comfortable with.	Strategy Explained: Students understand that if they double one number and halve the other number they will have an equivalent expression. $\begin{aligned} & 12 \times 4 \\ & 12 \times 4=24 \times 2 \\ & 24 \times 2=48 \times 1 \end{aligned}$ 4 \square 2 \qquad $2 \times 64=128$	Strategy Explained: Students understand that the can divide a number into its factors if this makes the problem easier for them to solve.

DIVISION		
Fair Sharing/ Sharing Out	Repeated Subtraction/ Repeated Addition	Partial Quotients
Strategy Explained: Students share out into the corresponding number of groups until there are no more to share. $8 \div 4$	Strategy Explained: Students count backwards or repeatedly subtract to find the answer. $\begin{aligned} & 12 \div 4 \\ & 12-4=8 \\ & 8-4=4 \\ & 4-4=0 \\ & 12 \div 4=3 \\ & 24 \div 6 \end{aligned}$	Strategy Explained: Students use facts they know to take chunks away until they arrive at the answer. $42 \div 3$ $30 \div 3=10$ * 3 will fit into 42 at least 10 times, but still 12 left $12 \div 3=4 \quad * 3$ fits into the remaining 124 times $42 \div 3=14$
Multiplying Instead	Halving and Halving	
Strategy Explained: Students use their understanding of multiplication to help them solve division questions. This works because multiplication and division are inverse operations. $\begin{aligned} & 64 \div 8 \\ & 8 \times ?=64 \\ & 8 \times 8=64 \\ & 64 \div 8=8 \end{aligned}$	Strategy Explained: Students understand that if the divide each number in a division question by the same number it will create an equivalent question. They can use this understanding to make the question easier. $96 \div 8$ $96 \div 8=48 \div 4$ * dividing each number by 2 $48 \div 4=24 \div 2$ * dividing each number by 2 $24 \div 2=12 \div 1$ * dividing each number by 2 $96 \div 8=12$ Students do not have to divide each number by 2. If they can see that a bigger number is a factor of both numbers they can divide with that number. In the above example, they student could have started to divide both numbers by 4 .	

